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Abstract

General scalar linear systems are addressed. It is shown that the earlier introduced dynamic
eigenvalues satisfy a scheme of polynomial characteristic equations of decreasing order.

1 Introduction

As is well known, small variations around a particular solution trajectory of an arbitrarily nonlinear
dynamical system satisfy a linear time-varying (LTV) equation [1]. As was shown earlier, the
modal solutions of this type of equations turned out to be fully characterized by the so-called
dynamic eigenvalues [2]. Moreover, the Riccati equation was recognized as the characteristic
equation [3, 4].

In this article, it is proven that the dynamic eigenvalues alternatively satisfy a scheme of polynomial
equations of decreasing order. In this scheme, the time-dependent coefficients of each lower order
polynomial equation incorperate the dynamic eigenvalue solutions of all higher order polynomial
equations.

At first glance this seems to be in contradiction with the theory of linear time-invariant (LTI)
systems with precisely one characteristic equation for the complete eigenspectrum. However, in
section 2 it will be shown that also for the familiar LTI systems there is a scheme of characteristic
equations corresponding to the set of eigenvalues.

In section 3, the state-space approach for LTV systems is used in order to obtain the dynamic
eigenvalues and the corresponding characteristic equation [5]. The results are in agreement with
LTI systems. It is demonstrated that the scheme of characteristic equations for LTV systems cannot
be reduced to a single one, as is the case for LTI systems.

Finally, it is shown how the Cauchy-Floquet decomposition can be obtained without using the
state-space approach (compare [6]).



2 A Scheme of Characteristic Equations for LTI Systems
Assume that the homogeneous scalar input-output relation for LTI systems is given by
aoD"z + D" e+ -+ a, 1D+ a,x =0, 2.1

where D denotes the k-th derivative to the time ¢ and 2 = z(¢) the output signal, respectively,
while ag, ay, . .., a, are constant system parameters, or, more compactly

> a;D"a(t) =0. (2.2)

In the next, relation (2.1) and (2.2) will be normalized by setting
a=1. (2.3)
If we write for the time derivatives
D¥z = D*'[D — Nz + AD" 'z, (2.4)

where )\ denotes some constant, relation (2.2) can be expanded as

n—1

ZaanlzD Az —i—Zal)\”Z =0, (2.5)

=0

in which the constant coefficients «; are given by
=Y aN7 (i=0,1,....n—1). (2.6)

Equation (2.5) shows that a modal solution of the form
x = exp(At) 2.7)

satisfies (2.1) or (2.2) if and only if the eigenvalue A = )\, is a solution of the polynomial equation

zn: @A\t =0, (2.8)
=0

which at this place is called the first characteristic equation.
In a next expansion, for some constant j, equation (2.5) goes into

n—2 n—1 n
D BD"D = ply(t) + > ap T y(t) + > aN" () = 0 (2.9)
=0 =0 =0



in which
y(t) = [D = Na(t), (2.10)

while the new constant coefficients [3; are given by

Bi=> a7 (i=0,1,...,n—2). (2.11)

Next, with
x = exp(ut), (2.12)

we deduce from (2.8), (2.9) and with A = )\,,, that even for equal eigenvalues, expression (2.12)
is a modal solution of (2.1) or (2.2) if and only if © = A, _; is a solution of the so-called second
characteristic equation

n—1
» aXT =0, (2.13)
=0
Moreover, since
Zazv T s = A ) e =0, (2.14)
=0

it follows by substitution of (2.6) for «;
Zazvf Tt — A +iamg = Zaw i Za])\" J —|—Za])\0 Xt
+Zaj)\1 J Zaj)\l IN—1 +Zaj)\" = J—Za])\” D L—

ap\r_; + alAz,} ot ap N ta,=0. (2.15)

Thus, for LTI systems the first characteristic equation implies the second one.

From another point of view, equation (2.8) corresponds to an algebraic polynomial of degree n,
while (2.13) shows an algebraic polynomial of degree n — 1.

Furthermore, relation (2.6) directly implies forz =1,2,...,n — 1

AQ_j = —Qp_jp1 + Qp_jy1 (2.16)

and for: =0
apA = —a; + o with ag=1. 2.17)

Now, if A is eliminated from (2.16) and (2.17), we obtain forz =1,2,...,n — 1

(a1 — a1)an—i — Qn—jp1 + Gp_jz1 = 0. (2.18)



Next, we introduce the row vectors

aT: [O[n_l,...,Ozl]
a’ =[an,...,a] (2.19)

e’  =[0,...,0,1]

in which T stands for the transpose, and the shift-matrix I | as

0 1 ... 0
= . (2.20)
: o1
0 ... ... 0

As a consequence, (2.18) can be written as the vector algebraic Riccati equation [7]
o’e,_1a’ —aa’ —a'TT [ +a” =0". (2.21)

In the same way, the characteristic equation (2.13) together with (2.11) induces a second algebraic
Riccati equation, namely

Bre. 8" —B" —B'L; ,+b" =0", (2.22)

with
B =Buas-- s3], =[an 1, .., 0], b1 =ay . (2.23)

Obviously, this process can be continued (n — 1) times. The final result is that the original input-
output equation (2.1) or (2.2) is replaced by

1
(D =ML D = Mz + Y a" UMD = N[ ] x [D = Ao+
=0
2 n—1 n
£ al D =N D= Aar -+ Y oA D= AJe+ Y el A = 0.
=0 =0 =0
(2.24)

It is concluded that the original differential polynomial with constant coefficients in (2.1) or (2.2)
is factorized from the right in terms of the eigenvalues \,, \,_1,...,A;. The coefficients agj )
(j=0,1,...,n— 1) in (2.24) are obtained as

a” =a; (i=0,1,...,n), (2.25)

, o : i=01,...,n—3j
a@(ﬂ) _ Zo‘l(cj 1))\;}+1—Jf0r ( J) (2.26)
=0 j=12,....,n—-1),



with
af) =1. (2.27)

Elimination of the eigenvalues A; from (2.26) with ¢ = 1 leads to
ol =al™ 4\, (2.28)

which on its turn yields on account of (2.27) a set algebraic Riccati equations of a lower dimension.

3 A Scheme of Characteristic Equations for LTV-Systems

In the preceding section a scheme of polynomial characteristic equations for a LTI system has been
derived. In it, each polynomial equation corresponds to a single algebraic Riccati equation.

In this section, first the reverse problem will be considered, that is, the Riccati equation will be
obtained directly from the differential input-output equation, and afterwards the polynomial char-
acteristic equation from the Riccati equation. For that purpose, the input-output equation (2.1) is
rewritten in state-space description as

Jr
& = {I"; e’“} z, (3.29)

where the dot stands for a differentiation with respect to the time ¢. This equation will be trans-
formed to an alternative state-space description according to the transformation [8]

I, O
= , 3.30
v [pT Jy 530
in which
T _
P =[p1,-- . Do) (3.31)

The result of this transformation can be stated as

. I+71 + en—lpT €n—-1
— | n , 3.32
Y [ oT 5 | Y (3.32)
where
Ap = —a; — Pn-1 (3.33)
and p7 satisfies the vector Riccati differential equation [7]
pT = —p'T}  —a” + \p". (3.34)

It may be clear that we have assumed that the collumn vector p in (3.30) is a function of time, thus
pT = pT(t). This allows a generalization to LTV systems.
If p” is assumed to be a constant, then the lefthand side of (3.34) reduces to zero and we have an



algebraic Riccati equation. In that case, it follows that ), is a classical eigenvalue of the system
given by (3.32) and thus of system (3.29). As a consequence, A, i8 an eigenvalue of the original
LTI system, given by (2.1) or (2.2).

Next, we have to show that the dynamic eigenvalue [2] An = S\n(t) satisfies a polynomial char-
acteristic equation for a scalar LTV system with input-output equation (2.1) in which the system
parameters are time-varying , thus a; = a;(t). For that purpose (3.34) is rewritten as

—Di + MaPi1 = Ui+ Pip1 (i =0,1,...,n—2) (3.35)

with a; = a;(t) and py = 0. If the equations in (3.35) are multiplied by A and subsequently added

together, we obtain
n

N Py = > (@i + Pooig) Ny (3.36)

=2
Elimination of p,,_1 = p,,_1(¢) from (3.35) with the aid of (3.33) yields

n

> at)A () =0, (3.37)

i=1

in which the modified polynomial time-dependent coefficients a;(t) are given by
a; = Qi + Pp—it1» (3.38)

with p, = 0.

Note that for LTI systems, where pT is a constant vector, and as a consequence p,_;+1 = 0,
equation (3.37) reduces to the classical characteristic polynomial equation with An an eigenvalue
of the input-output equation (2.1) with constant system parameters.

Next, we show
A = A (3.39)

To that aim, we remark that (3.32) yields
yi:yiJrl (221,2,,71—2)
ynfl =i+ +DPn1Yn1t+ Yn . (340)
As a consequence, we have
D" Yy — pp1 D" Py — .
coo = p2Dyr — pry1 = Yn : (3.41)
Hence, y,, has the modal form [9]

(1) = C expl] An(r)dr] (3.42)



with C a constant. In addition, we have
[D = \J(D" ™ —pp D" 2 — . — D —py)y1 = 0. (3.43)

It is observed that the original differential polynomial in (2.1) this time will be factorized from the
left. Since transformation (3.30) implies

p=n =, (3.44)

equation (3.43) directly results into the identity (3.39).
It should be remarked, again, that (3.43) remains valid if the coefficients a; are functions of time,
thus a; = a;(t). To show this directly without the use of any state-space description, write

D"z =[D — \,|D" 'z 4+ \, D" 'z (3.45)
with \, = \,(t) and substitute (3.33), resulting into
D"z = [D — \,|D" 'z — (ay + po_y)D" 'z, (3.46)
with a; = a;(t). As a consequence, we obtain the identity
D"z +a, D" e =[D — A\ ]D" ‘o — p,_ D" . (3.47)
Next in (3.47) we apply

o1 D" ' = D(pp1 D" 1) — pr1D" 22 = [D — Ma|pa_1 D" %2 + (ApPao1 — pn_2)D" 2z,
(3.48)
and subsequently use expression (3.35) for ¢ = n — 2. This yields

D"z 4+ a, D" 'z + a; D" *x = [D — S\n](D”’lx — D1 D" 22) — pp_o D" (3.49)
By repetition of the above arguments we get

D'z +a; D" 'z +a, D" 22+ -+ +a, 1 Dx =
(D — \)(D" 'z —p, D" 2z — - — pyDz) — py Dz (3.50)

Finally, with

pmDx = [D — \|p1x + a,z, (3.51)

we arrive at

D'z +a; D" 'z +a D" 2z + -+ a, 1 Dzx + a,x =
(D — \J(D" Yo —po D" 22 — - — pyDx — prz), (3.52)

for a; = a;(t). Itis clear that this process can be continued until the Cauchy-Floquet decomposition
is obtained.



4 Conclusions

It is proven that for linear time-invariant (LTI) as well as for time-varying (LTV) systems the
differential system operator induces a scheme of coupled characteristic polynomials. In it, each
polynomial equation corresponds to a single Riccati equation. Also, the coefficients of each lower
order polynomial contain the solutions of all higher order polynomial equations.

For constant (LTI) systems, the scheme of coupled polynomial equations reduces to a single char-
acteristic equation for the complete eigenspectrum. This is not the case for time-varying systems.
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