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Abstract— The frequency behaviour of time-
varying small-signal models of nonlinear circuits is
described by a modal expansion. Key concepts of
time-invariant theory as normal mode, natural fre-
quency and pole are generalized into the time-varying
context. It is shown that with the exception of slowly-
varying circuits, the accumulated meaning of a pole in
time-invariant theory is lost for time-varying systems.
Their impact turns out to be restricted exclusively to
the high-frequency behaviour. Moreover, these high-
frequency poles no longer coincide with the natural
frequencies, while their location in the right-hand side
of the complex frequency-plane neither predicts insta-
bility. Instead, their classic role in stability theory has
to be replaced by a newly introduced complex Lya-
punov exponent. This concept is closely related to
the earlier introduced dynamic eigenvalue. The latter
formally follows from a Riccati differential equation
in its formal meaning of the generalized characteris-
tic equation pertaining to linear time-varying systems.
Both the complex Lyapunov exponent and the dynamic
eigenvalue define to some extent a generalized pole
concept.

I. INTRODUCTION

The frequency behaviour of relatively small vari-
ations of nonlinear dynamic circuit solutions is de-
scribed. Small-signal model circuits share their topol-
ogy with the associated original nonlinear circuits,
while each nonlinear circuit element is replaced by an
incremental one, evaluated along the nonlinear solu-
tion. As a consequence, they are linear time-varying
(LTV) by nature [1], [2].
As concerning the analysis of the frequency behaviour
of LTV systems, a great deal of effort is put in
the development of an extended LTV transferfunc-
tion concept that generalizes the well-known linear
time-invariant (LTI) transferfunction [4] - [7]. Except
from [7], where operator theory is used, these contri-

butions are all based on a direct frequency approach.
In this paper, we describe the frequency behaviour
from a modal expansion point of view [8]. With a
single mode circuit as a starting point, key concepts
of time-invariant theory as normal mode, natural fre-
quency and pole are generalized to the time-varying
context. They are all associated with the earlier intro-
duced dynamic eigenvalues [9] - [13].
In section 2 a first order LTV RC-circuit is first ana-
lyzed in the time-domain. To that aim, the state equa-
tion for the electrical charge is formulated and sub-
sequently solved by staightforward integration. The
solution is interpreted as a normal mode with con-
stant amplitude and time dependent phase, respec-
tively. The latter is associated with a time depen-
dent natural frequency as the physical interpretation
of a dynamic eigenvalue. Here, a time dependent fre-
quency has to be understood in the sense of [14].
In section 3, the frequency spectra for the circuit vari-
ables are easily obtained by taking the Fourier trans-
form of their modal representations. It turns out that
their high-frequency spectra are determined by a real
pole in the complex frequency-plane. Next, it is
shown that on condition of a negative Lyapunov ex-
ponent, the LTV circuit solution is even stable if the
high-frequency pole is located in the right-half com-
plex frequency-plane.
In section 4, the state-equation with respect to a gen-
eral source-free LTV circuit is first diagonalized by a
suitable chosen Lyapunov transformation. As shown
earlier, the associated Lyapunov matrix is formally
obtained by solving a Riccati differential equation.
The latter turns out to be the generalized character-
istic equation for LTV systems [10], [13]. From it, the
dynamic eigenvalues follow immediately. In general,
they are complex valued and not necessarily two-by-
two complex conjugated [9]. Once the system is diag-
onalized, the solutions then follow by straightforward
integration. They appear as uncoupled normal modes



with the dynamic eigenvalues as time dependent nat-
ural frequencies. With them, the complete solution
of the system equations is written as a linear combi-
nation of oscillatory modes. Each constituent mode
is characterized by a time dependent complex ampli-
tude vector and a time dependent complex natural fre-
quency, respectively. Thus, in stead of first formulat-
ing the dynamic eigenvalue problem as in [8], [11],
[12], the modal expansion now follows in a straight-
forward way.
From now on, we proceed as in the preceeding sec-
tion. Therefore, essentially the same conclusions are
reached concerning the frequency spectrum pertain-
ing to any individual mode. Finally, a complex Lya-
punov exponent is introduced as the asymptotic mean
value of a dynamic eigenvalue. It replaces the role of
a pole in time-invariant stability analysis. In this re-
spect, both the complex Lyapunov exponent and the
dynamic eigenvalue define to some extent a general-
ized pole concept.

II. FIRST ORDER LTV CIRCUIT IN TIME-DOMAIN

Consider an elementary LTV RC-combination
where both elements are time-varying. Let the capa-
citor be characterized by a time-dependent elastance
s = s(t) [F−1]. Then, its constitutive relation is given
by

u(t) = s(t)q(t) , (1)

where u = u(t) and q = q(t) denote the volt-
age across the RC-combination and the accumulated
charge by the current i = i(t) through it, respectively.
In view of the Kirchhoff laws, we then have for the
resistor

i(t) = −g(t)u(t) , (2)

in which the time-dependent conductance is denoted
by g = g(t) [S]. Combining (2) with (1) yields

i(t) = −g(t)s(t)q(t) . (3)

Since i = q̇(t), where the dot refers to the time
derivative, we arrive with (3) at the following ho-
mogeneous linear differential equation with time-
dependent coefficient

q̇(t) = λ(t)q(t) , (4)

where λ(t) denotes the earlier introduced dynamic
eigenvalue with respect to (4) [9], here given by

λ(t) = −g(t)s(t) . (5)

With the assumption that q(0) is a known quantity, it
is easy to verify that

q(t) = q(0) exp(γ(t)) (6)

with

γ(t) =

∫ t

0
λ(τ)dτ , (7)

is the solution of (4) for t > 0. Now, the voltage u(t)
and the current i(t) follows respectively from (1) and
(3) as

u(t) = q(0)s(t) exp(γ(t)) (8)

and
i(t) = q(0)λ(t) exp(γ(t)) . (9)

The expressions (8) and (9) are subsequently in-
terpreted as an oscillatory mode with time depen-
dent amplitude q(0)s(t) and q(0)λ(t), respectively,
and time dependent phase γ(t). Moreover, we ob-
serve from (7) that γ̇(t) = λ(t) has the meaning
of an inverse time dependent relaxation time (’time-
constant’) or, more generally, a time dependent natu-
ral frequency.
Finally, it is remarked that the electrical charge q(t)
is the only state variable for which in absence of a
current impulse, time continuity is ensured (compare
[15]). As a consequence, the state-equation (4) leads
exclusively to that modal solution (6) for which the
amplitude is a constant, while its phase γ(t) is un-
ambiguously defined. For this reason, the modal rep-
resentation (6) is called a normal mode [16]. The
other circuit variables u(t) and i(t) follow from q(t)
upon multiplication by a time dependent circuit pa-
rameter, and therefore share the same phase γ(t) in
the modal representations (8) and (9), respectively. In
conclusion, λ(t) is not only the dynamic eigenvalue
with respect to state-equation (4) but for the LTVRC-
combination as a system as well.

III. FREQUENCY SPECTRUM OF FIRST-ORDER

LTV CIRCUIT

Due to the results of the preceeding section, the fre-
quency spectrum U(ω) of the voltage u(t) across the
LTV RC-combination is in view of causality easily
found to be

U(ω) = q(0)

∫ ∞

0
s(t) exp(γ(t)− jωt)dt , (10)

and analogous for the frequency spectrum I(ω) of the
current i(t) through it as

I(ω) = q(0)

∫ ∞

0
λ(t) exp(γ(t)− jωt)dt . (11)

We check these expressions for a LTI RC-circuit.
With s(t) = C−1, where C denotes the capaci-
tance, and g(t) = R−1, we successively have λ(t) =



−(RC)−1 = λ and γ(t) = λt. Assuming stability,
thus λ < 0, the integrals in (10) and (11) then yield

U(ω) =
−Rq(0)λ

(jω − λ)
and I(ω) =

q(0)λ

(jω − λ)
. (12)

It follows that the frequency spectrum is completely
determined by a single pole for jω = λ in the com-
plex jω-plane. Moreover, the pole coincides with the
constant natural frequency λ.
We now return to the time-varying context and try to
work the integrals (10) and (11) towards the results
(12). With the substitution (compare (7))

dt = (λ(t)− jω)−1d(γ(t) − jωt) , (13)

the integral in (11) can be converted into the following
expression

I(ω) =
q(0)λ(0)

(jω − λ(0))
+

+ q(0)

∫ ∞

0

jωλ̇(t)

(λ(t)− jω)2
exp(γ(t)− jωt)dt ,

(14)

while (10) delivers a similar result. Thereby, it is as-
sumed that 1. λ(t) is bounded for t → ∞ and 2.
t−1γ(t) < 0 for t→∞. Thus, the LTVRC-circuit is
assumed to be stable and, as a consequence, is charac-
terized by a negative Lyapunov-exponent χ. The latter
is defined as [17]

χ = lim
t→∞

t−1 ln |x(t)| , (15)

where x(t) equals either u(t) or i(t) as they are given
by (8) and (9), respectively. It follows that under the
asserted assumption of a bounded real value of λ(t),
the stability condition χ < 0 can also be written as

lim
t→∞

t−1

∫ t

0
λ(τ)dτ < 0 , (16)

from which it is clearly observed that not only nega-
tive values of λ(t) are allowed, but possitive values as
well, provided that on the long run the mean value of
λ(t) turns out to be negative.
By repeated use of substitution (13) a series expansion
results that due to the theorem of Riemann-Lebesgue,
represents a progressively accurate approximation for
the high-frequency spectrum. In particular, it follows

I(ω) =
q(0)λ(0)

(jω − λ(0))
+O(ω−2) forω →∞ , (17)

while it is analogously found

U(ω) = −R(0)q(0)λ(0)

(jω − λ(0))
+O(ω−2) forω →∞ ,

(18)

in which R(0) = (g(0))−1. Note that (17) and (18)
are in agreement with the initial value theorem for
Fourier integrals of causal functions.
From (17) and (18) it is observed that the high-
frequency spectrum of a linear time-varying RC-
circuit is dominated by a single pole at jω = λ(0)
in the complex jω-plane. Different from the time-
invariant RC-combination, the fixed pole not longer
coincides with the natural frequency λ(t). Moreover,
it might be that λ(0) > 0 while yet the stability con-
dition (16) is satisfied.
If λ̇(t) = 0, it is easily deduced that

I(ω) =
q(0)λ(0)

(jω − λ(0))
and U(ω) = −R(0)q(0)λ(0)

(jω − λ(0))
.

(19)
Since the condition λ̇(t) ' 0 applies for a slowly-
varying RC-circuit [10], we conclude that the fre-
quency spectrum, just as for its time-invariant an-
tipode, is completely determined by a single pole for
jω = λ(0). But different from the time-invariant
case, the slowly-varying RC-circuit is even stable if
λ(0) > 0, provided that λ(t) keeps satisfying (16).
Finally, it is remarked that due to the duality principle
in circuit theory, a LTV RL-combination yields iden-
tical results.

IV. FREQUENCY SPECTRUM BY MODAL

EXPANSION

Consider a general source-free LTV electrical cir-
cuit. Then, the state equations can be written as (see
[18] for writing state equations)

ẋ = A(t) x (a) and y(t) = B(t)x (t) (b) .
(20)

Here, the state n-vector x (t) collects the capacitor
charges and inductor fluxes as independent state vari-
ables, respectively, while A(t) is a bounded square
matrix of order n. In addition, the m-vector y(t)
contains the desired voltages and currents, while the
m× n matrix B(t) is assumed to be bounded.
In order to obtain a modal expansion for the unknown
circuit variable y(t), we first apply a Lyapunov trans-
formation L(t) that diagonalizes the system equations
(20.a) [8]. Thus, by setting

x (t) = L(t)z (t) , (21)



system (20.a) goes into the diagonal LTV system

ż = Λ(t)z , (22)

where the diagonal matrix Λ is obtained as [19], [20]

Λ = L−1AL− L−1L̇ . (23)

As outlined in [9], [10], [13], the particular Lya-
punov matrix L that indeed diagonalizes system (20.a)
is found by solving a Riccati differential equation of
order (n− 1). From a fundamental point of view, this
equation turns out to be the generalized characteris-
tic equation with respect to LTV systems [10], [13].
From a practical point of view, the diagonalizing ma-
trix L may be found by using the iterative procedures
as proposed in [8], [11], [12], [13]. Once L is
known, the diagonal matrix Λ follows from (23) as

Λ(t) = diag{λ(t), λ(t), . . . , λn(t)} , (24)

in which the elements λi(t) (i = 1, 2, . . . , n) are rec-
ognized as the dynamical eigenvalues with respect to
the dynamic similar systems (22) and (20.a), respec-
tively [9], [11], [12], [13]. In general, they are com-
plex valued and not necessarily two-by-two complex
conjugated as they are in the time-invariant case [9].
Next, the diagonal system (22) is solved by straight-
forward integration. The n independent solutions
zi(t)(i = 1, 2, . . . , n) are found as

zi(t) = zi(0) exp(γi (t)) , (25)

in which γi(t) is given by (compare (7))

γi(t) =

∫ t

0
λi(τ)dτ . (26)

As in section 2, the expression (25) is interpreted for
each i as an individual normal mode with time depen-
dent complex phase γi(t) and time dependent com-
plex natural frequency λi(t), respectively. Since the
n modes (25) are completely uncoupled, they form a
base in state-space. As a consequence, the solution of
(22) can be written as the modal expansion

z (t) =
n∑

i=

zi(t) , (27)

where on account of (21) we have z (0) =
L−1(0)x (0) with x (0) a given initial state. Upon
combining (27) and(21) with (20.b) we finally arrive
at the desired modal expansion for y(t), namely

y(t) =
n∑

i=

ui(t) exp(γi(t)) , (28)

in which the time dependent amplitude vectors ui(t)
are given by ui(t) = B(t)L(t)zi(0). Note that due
to the boundedness of the circuit matrix B(t) and the
Lyapunov matrix L(t), respectively, the amplitudes
ui(t) are bounded, too.
We now are in he position to proceed in conformity
with section 3. Thus, the frequency spectrum of the
collected voltages and currents in y(t) are given by
the complex valued m-vector Y (ω) as

Y (ω) =

n∑

i=

∫ ∞

0
ui(t) exp(γi(t)− jωt)dt . (29)

Through substitution (13), we easily obtain in analogy
to (17) and (18) for the high-frequency spectrum

Y (ω) =

n∑

i=

ui(0)

(jω − λi(0))
+O(ω−2) for ω →∞ ,

(30)
while for slowly varying LTV circuits, as in (19), the
first term in the right hand-side of (30) applies for any
ω. Here, again stability is assumed, which due to the
boundedness of the amplitudes ui(t) comes down to
the replacement of (16) by the condition [10], [21].

lim
t→∞

<{t−1

∫ t

0
λi(τ)dτ} < 0 for i = 1, 2, . . . , n ,

(31)
where < denotes the real part. Thus, the Lyapunov
exponents associated with the individual modes have
all to be negative. In summary, the conclusions per-
taining to a single mode circuit, essentially applies to
a general LTV circuit as well.
As a final observation, it is remarked that the complex
Lyapunov exponents Li , introduced by the definition

Li = lim
t→∞

t−1

∫ t

0
λi(τ)dτ (i = 1, 2, . . . , n) , (32)

obviously replace the role of poles in the stability
analysis pertaining to time-invariant systems. Note
also that the complex Lyapunov exponents Li are
global quantities, contrary to the dynamic eigenvalues
λi which are locally defined. Moreover, as we proved
earlier [9], the dynamic eigenvalues equal the ’right
poles’ as introduced in [22]. Therefore, both the com-
plex Lyapunov exponents and the dynamic eigenval-
ues define to some extent a generalized pole concept.

V. CONCLUSIONS

Due to linearity, the complete solution of a source-
free time-varying circuit can be written as a lin-
ear combination of elementary modal solutions, each



characterized by a dynamic eigenvector and a dy-
namic eigenvalue. These mathematical concepts are
physically interpreted as a time dependent amplitude
and an also time dependent natural frequency, respec-
tively.
The high-frequency behaviour of each constituent
mode is dominated by a single, fixed pole. Provided
that the associated Lyapunov exponent of a mode is
negative, the mode is even stable if its high-frequency
pole is located in the right-half complex frequency
plane. The frequency behaviour of a slowly-varying
mode is completely determined by a single pole. Here
again, the location of the pole is not decisive for the
stability of a mode.
A complex Lyapunov exponent is introduced as the
asymptotic mean value of a dynamic eigenvalue. It is
the generalization of a classic pole in the sense that
stability is ensured if its real part is negative. On
the other hand, the dynamic eigenvalues, to which
the complex Lyapunov exponents are closely related,
follow from a generalized characteristic equation and
equal the ’right poles’ as introduced in [22]. In this
respect, a (time dependent) dynamic eigenvalue also
defines a generalized pole concept. Both the complex
Lyapunov exponent and the dynamic eigenvalue coin-
cide with a fixed pole in the time-invariant framework.
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ary Linear Time-Varying Systems, IEEE Trans. on Circuits
and Systems, Vol. CAS-29, No.3, March 1982, pp. 169-184.

[6] M.R. Belmont and J.J. Matthews, Generalized frequency re-
sponse as applied to circuits with time varying elements,
IEE Proc.-Circuits Devices Syst., Vol. 142, No. 4, August
1995, pp. 217-222.

[7] J.A. Ball, I. Gohberg and M.A. Kaashoek, A Frequency Re-
sponse Function for Linear, Time-Varying Systems, Math.
Control Signals Systems (1995)8, pp. 334-351.

[8] M. -Y. Wu, On the Stability of Linear Time-Varying Systems,
Int. Journ. Systems Science, Vol. 15, No. 2,1984, pp. 137-
150.

[9] P. van der Kloet and F.L. Neerhoff, On Eigenvalues and
Poles for Second Order Linear Time-Varying Systems, Proc.
NDES’97, Moscow, Russia, June 26-27, 1997, pp. 300-305.

[10] P. van der Kloet and F.L. Neerhoff, Behaviour of Dynamic

Eigenpairs in Slowly-Varying Systems, Proc. NDES’99,
Ronne, Denmark, July 15-17, 1999, pp. 9-12.

[11] P. van der Kloet and F.L. Neerhoff, Iteration Schemes for
the Modal Solutions of Linear Time-Varying Systems, Proc.
NDES’99, Ronne, Denmark, July 15-17, 1999, pp. 25-28.

[12] P. van der Kloet and F.L. Neerhoff, Diagonalization Al-
gorithms for Linear Time-Varying Dynamic Systems, to be
published in Int. Journ. Systems Science.

[13] P. van der Kloet, F.C.M. Kuijstermans, F.L. Neerhoff, A. van
Staveren and C.J.M. Verhoeven, A note on Dynamic Eigen-
values and Slowly-Varying Systems, Proc. X. Int. Symp.
Theor. Electr. Eng., Magdeburg, Germany, 1999, pp. 141-
144.

[14] J.R. Carson, Notes on the theory of modulation, Proc. IRE,
Vol. 10, 1922, pp. 57-64.

[15] C.A. Desoer and E.S. Kuh, Basic Circuit Theory, Mc.Graw-
Hill, 1969, p. 792.

[16] C.A. Desoer, Modes in Linear Circuits, IRE Trans. on Cir-
cuit Theory, CT-7, 1960, pp. 211-223.

[17] L.Ya. Adrianova, Introduction to Linear Systems of Differ-
ential Equations, American Math. Soc., Providence, 1995,
p. 25.

[18] L.O. Chua, C.A. Desoer and E.S. Kuh, Linear and Nonlin-
ear Circuits, Mc.Graw-Hill, 1987, p. 727.

[19] L.Ya. Adrianova, Introduction to Linear Systems of Differ-
ential Equations, loc. cit., p. 44.

[20] F.R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea
Publ. Comp., New York, 1974, p. 118.

[21] L.Ya. Adrianova, Introduction to Linear Systems of Differ-
ential Equations, loc. cit., p. 44.

[22] E.W. Kamen, The poles and zeros of a linear time-varying
system, Lin. Algebra and its Appl., Vol. 98, 1988, pp. 263-
289.


