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ABSTRACT

On the basis of a mode-vector representation, we show
that its time-varying amplitudes and frequencies can re-
spectively be obtained by diagonalizing the time-varying
system equations. Next, we reformulate an explicit it-
eration scheme that was earlier proposed by Wu. Then,
the missing convergence proof is given. Moreover, we
present a new and implicit algorithm that is closely re-
lated to that of Wu. In both algorithms, the time-varying
system matrix is gradually diagonalized by successive al-
gebraic similarity transformations.

1. INTRODUCTION

Apart from their own significance, linear time-varying
systems can also result from modelling all kinds of phys-
ical systems. For example, when studying the local be-
haviour of nonlinear electronic circuits, the Jacobian ma-
trix along a bias trajectory constitutes the time-varying
system matrix [1]. In principle, the solutions of the de-
scribing linear system of differential equations can be ob-
tained by diagonalizing the system equations [2]. How-
ever, a direct implementation of such an approach neces-
sarily involves the solution of a Riccati differential matrix
equation [3]. In [4], this is worked out in detail for two-
dimensional systems.
An alternative for this procedure was earlier proposed in
a paper by Wu [5]. There, the author introduced an
iteration scheme that diagonalizes the system equations
without the need for solving Riccati-equations. However,
Wu’s formulation of the algorithm seems quite cumber-
some, mainly because a convergence proof was missing.
Perhaps it could therefore happen that in a next paper the
algorithm was qualified as a trial-and-error method with-
out any further comment [6].
In this paper, we present a complete proof of Wu’s al-
gorithm. The conditions which have to be satisfied for

convergence are also given. Moreover, we present a new
algorithm that is closely related to that of Wu. In both
algorithms, the time-varying system matrix is gradually
diagonalized by successive algebraic similarity transfor-
mations. Hence, in the proces of computation the matri-
ces involved are assumed to depend parametrically on the
time.
Following Wu [5], in the next section the problem is for-
mulated with a mode-vector representation for the solu-
tions as a starting point. Then, a subsequent substitution
in the system equations results into what we call the dy-
namic eigenvalue problem. It is, indeed, a generalization
of the classical, algebraic eigenvalue problem for system-
s with constant elements. Next, we show that the modal
solutions can be obtained by a coordinate transformation
that diagonalizes the system equations.
In Section 3, the iteration scheme earlier proposed by Wu
is reformulated and subsequently identified as an explic-
it algorithm. This is followed by a convergence proof.
It turns out that the uniform convergence of the rate of
change of the successive algebraic similarity transforma-
tions is crucial. As a variant of Wu’s algorithm, in Sec-
tion 4 an implicit diagonalization algorithm is derived. It
is proved that the conditions for convergence are the same
as for the explicit scheme.

2. STATEMENT OF THE PROBLEM

Consider the homogeneous linear system of time-varying
differential equations

ẋ = A(t) x , (1)

where A denotes a given n × n system matrix whose
elements are continuously differentiable functions of the
time t , while x is an unknown time-dependent n-vector.
Following Wu [5], we look for n independent solutions



of the modal form

x (t) = u(t) exp(γ(t)) . (2)

Here, u(t) can be interpreted as a time-dependent ampli-
tude vector, while the scalar funtion γ(t) can be associat-
ed with a time-dependent frequency λ(t), given by

λ(t) = γ̇(t)⇐⇒ γ(t) = γ(t0) +

∫ t

t0

λ(τ) dτ (3)

where t0 is the initial time. Substitution of (2) into (1)
results into the following expression for the unknowns
u(t) and λ(t) (compare [5], [6] and [7] )

[A(t)− λ(t)I]u(t) = u̇(t) , (4)

in which I denotes the identity. Equation (4) constitutes
what we call the dynamic eigenvalue problem associat-
ed with (1). Then, the quantities λ(t) and u(t) can be
identified as a dynamic eigenvalue and a dynamic eigen-
vector, respectively. A pair {λ , u} such that (4) is satis-
fied, is called a dynamic eigenpair of (1). Note that there
is a distinguished difference with the classical eigenval-
ue problem. There, both λ and u are constants, so the
right-hand side of (4) becomes zero. In particular, it has
to be understood that although an algebraic eigenpair of
the time-varying matrix A(t) is time-dependent too, in
general it doesn’t have the direct physical interpretation
as its dynamical counterpart.
Next, we replace x (t) by y(t) according to the coordi-
nate transformation

x (t) = L(t) y(t) (5)

that results into the new linear system of time-varying
equations

ẏ(t) = B(t) y(t) . (6)

As a consequence, the system matrix B is given by [8]

B = L−1 A L − L−1 L̇ . (7)

By combining (2) and (5), it is observed that the n inde-
pendent solutions y of (6) each have the modal form (2)
with time-varying amplitudes (L−1 u), while the time-
varying frequencies λ of x are shared by y . This obser-
vation is reflected in the transformed dynamic eigenvalue
problem, obtained from (6) after a substitution of (2) in
(5) as

(B− λI)(L−1u) = (L−1u)˙ , (8)

by which it follows that {λ , (L−1u)} is a dynamic eigen-
pair of (6). Hence, the transformation L preserves the
dynamic eigenvalues of the original system (1). For that
reason we call L, in analogy with the algebraic eigenval-
ue problem a dynamic similarity transformation, while

the matrices A and B are called dynamic similar.
As in the algebraic case, the problem of solving (1) is
drastically simplified if L can be chosen such that the
system matrix B(t) equals a diagonal matrix Λ(t). Then,
system (6) becomes uncoupled and as a consequence, the
time-varying amplitudes (L−1 u) of the solutions y can
be chosen as constants. Thus, in that particular situation
the right-hand side of (8) becomes zero. Now, it is imme-
diately clear that the dynamic eigenvalues λ(t) then will
appear on the main diagonal of Λ(t), as is always the case
in the algebraic analogon.
In the next two sections, we respectively deal with two
closely related iteration schemes that each start with the
known system matrix A, ending up with the requested
matrices Λ and L. The basic idea of the first algorithm
was originally thrown up by Wu [5]. However, until now
a complete proof was missing.

3. EXPLICIT DIAGONALIZATION

Let A(t) be dynamic similar with the diagonal matrix
Λ(t). Then, there exist a dynamic similarity transforma-
tion L(t) such that

Λ = L−1 A L − L−1 L̇ . (9)

Note that the colums of L are just the dynamic eigenvec-
tors of (1). Next, this expression is alternatively written
as

Λ = L−1 (A − L̇ L−1 )L , (10)

which can subsequently be interpreted as an algebraic
similarity transformation of the matrix (A − L̇ L−1 ).
This suggests the following iteration scheme (compare
[5])

Λj = S−1
j (A − Ṡj−1 S−1

j−1)Sj (j = , , . . . )

with S = I , (11)

where Sj(t) is such that Λj(t) is diagonal. Hence, Sj(t)
constitutes a classical similarity transformation of the
matrix (A − Ṡj−1 S−1

j−1) that now depends parametri-
cally on the time. Thus, its time-parameterized algebraic
eigenvectors go into the colums of Sj . Thereby, it is ex-
pected that Sj and Λj converge to L and Λ, respectively.
Under certain conditions, it turns out that this conjecture
is valid indeed. Note that (11) gives an explicit expres-
sion for the successive approximations Λj of Λ. There-
fore, (11) is called an explicit iteration scheme.
We now present the main result of this paper.
Theorem
If, and only if the row {Ṡj}∞j=1 is uniformly convergen-
t, the algorithm defined by (11) converges. In particular,
the diagonal matrix Λ and the transformation matrix L in
(9) are respectively obtained as

Λ(t) = lim
j→∞

Λj(t) , (12)



L(t) = lim
j→∞

Sj(t) . (13)

In order to prove the theorem, we first derive the next
identity.
Lemma 1

Λ = R−1
j Λj Rj −R−1

j Ṙj + Ej , (14)

where the matrices Rj(t) and Ej(t) are respectively giv-
en by

Rj = S−1
j L , (15)

Ej = L−1 (Ṡj−1S−1
j−1 − ṠjS

−1
j ) L . (16)

Thus, up to the error Ej , the diagonal matrices Λ and Λj
are dynamic similar with dynamic similarity transforma-
tion Rj .
Proof
First, A is eliminated from (11) and (10). This yields

Λ = L−1 (SjΛjS
−1
j + Ṡj−1S−1

j−1 − L̇L−1) L ,

(17)

or, after rearranging

Λ = (L−1Sj)[Λj − S−1
j L̇L−1Sj +

+ S−1
j Ṡj−1S−1

j−1Sj ](S
−1
j L) . (18)

Next, the identity

(S−1
j L)˙ (S−1

j L)−1 = S−1
j L̇L−1Sj − S−1

j Ṡj (19)

is substituted into (18), resulting into the expression

Λ = (L−1Sj)[Λj − (S−1
j L)˙ (S−1

j L)−1](S−1
j L) +

(L−1Sj)[S
−1
j Ṡj−1S−1

j−1Sj − S−1
j Ṡj ](S

−1
j L) ,

(20)

in which the second term in the right-hand side is recog-
nized as the errror matrix Ej . Now, the lemma follows
immediately. �
Proof of the Theorem
Necessity: Since {Ṡj}∞j=1 is uniformly convergent, it
follows by integration that Sj has a nonzero limit for
j → ∞. So, limj→∞ S−1

j exists. As a consequence,
it follows from (16) limj→∞ Ej = 0. Hence, the algo-
rithm converges.
Next, notice that limj→∞ S−1

j = (limj→∞ Sj)
−1,

while with respect to the assumed uniform convergence
we also have limj→∞ Ṡj = (limj→∞ Sj) .̇ Thus, we
obtain from (14) for j →∞

Λ = R−1( lim
j→∞

Λj)R−R−1Ṙ , (21)

where R = limj→∞Rj . Now, observe from (21) that Λ
and (limj→∞ Λj) are dynamic similar with R as dynam-
ic similarity transformation matrix. As a consequence, Λ

and (limj→∞ Λj) share the same (dynamic) eigenvalues.
And since both matrices are diagonal, we readily con-
clude to the first statement (12) of the Theorem. Next, it
follows from (21) that R has to satisfy

Ṙ = ΛR−RΛ (22)

from which the elements rij(t) of R follows as rij =
cij exp(γi − γj) with cij arbitarily constants, some of
them may be zero. So, L is obtained from (15) for j →∞
as

L(t) = { lim
j→∞

Sj(t)}R(t) . (23)

Finally, it can easily be shown that the fundamental
matrices corresponding to the two different expressions
(13) and (23) for L are identical. Therefore, we can
chose R = I without loss of generality. Now, the second
statement (13) of the Theorem is also proved.
Sufficiently: Since the algorithm converges, we have
from (14) limj→∞ Ej = 0. Furthermore, we con-
clude with (12) and (23) with R satisfying (22)
Ṙ = limj→∞ Ṙj . Since R = limj→∞Rj , it fol-
lows that the row {Rj}∞j=1 is uniformly convergent.
Then, on account of (15), the row {(S−1

j ) ˙}∞j=1 is
uniformly convergent, too. Finally, by using the identity
(S−1
j ) ˙ = −S−1

j ṠjS
−1
j for j → ∞, we conclude that

{Ṡj}∞j=1 is uniformly convergent. �

4. IMPLICIT DIAGONALIZATION

In order to derive an implicit iteration scheme, the sys-
tem matrix A(t) is first parametrically diagonalized by
an algebraic similarity transformation Q(t). Thus

Λ̄ = Q−1
 AQ , (24)

where Λ̄(t) is diagonal. Substitution of (24) in (10) re-
sults into

Λ = L−1(QΛ̄Q
−1
 − L̇L−1)L (25)

which in turn is rewritten as

Λ = (Q−1
 L)−1(Λ̄ −Q−1

 Q̇)(Q
−1
 L)−

(Q−1
 L)−1(Q−1

 L)˙ , (26)

where we again have used idendity (19) with Q instead
of Sj . Now, it is observed from (26) that the matrix
(Λ̄ − Q−1

 Q̇) is dynamic similar with Λ. As a next
step, we repeat the procedure by parametrically diago-
nalizing the matrix (Λ̄ −Q−1

 Q̇) by an algebraic simi-
larity transformation Q(t), and so on. This brings us to
the following implicit iteration scheme

Λ̄j = Q−1
j (Λ̄j−1 −Q−1

j−1Q̇j−1)Qj (j = , , . . . )

(27)



with

Λ̄ = A and Q = I , (28)

where the diagonal matrices Λ̄j(t) (j = 1, 2, · · · ) are
up to an error Q−1

j Q̇j dynamic similar with Λ(t).
By executing the algorithm, it is readily seen that the suc-
cessive algebraic similarity transformation matrices Qj

are multiplied by each other, resulting into a transforma-
tion matrix Pj(t), defined by

Pj = QQ . . .Qj (j = ,  . . .) . (29)

As in the preceding section, it is now expected that under
conditions Pj converges for j → ∞ to L and Λ̄j to Λ,
respectively.
The proof of this conjecture is easely given, if one is
aware of the relation between the implicit and explicit
algorithm as expressed by the following lemma.
Lemma 2
The relation between the explicit and the implicit diago-
nalization algorithm as defined by (11) and (27) respec-
tively, is given by

Sj = Pj and Λj = Λ̄j (30)

where Pj is given by (29).
Proof
First, by comparing (27) with (11) for j = 1, it follows
that Λ̄ = Λ and S = Q. This result is subsequently
substituted in (27) for j = 2, followed by a substitution
of (11) for j = 1. Then, we easily obtain Λ̄ = Λ and
S = QQ. Next, we repeat the procedure for j = 3,
yielding after straightforward calculation Λ̄ = Λ and
S = QQQ, and so on. Finally, by mathematical
induction (30) follows. �
By using Lemma 2 in combination with the Theorem,
we have proved the conjecture.

5. CONCLUSIONS

It is shown that the iteration schemes perform successive
coordinate transformations that gradually result into that
coordinate system in which an observer travels along the
trajectory of the final diagonalized system. Only then, the
associated modes have constant amplitudes while they
are completely uncoupled. Of course, it remains to be
investigated for which class of systems the row {Ṡj}∞j=1

is uniformly convergent indeed.
The following observation suggests such a class of sys-
tems. Systems for which Ṡj → 0, as a consequence
have the property that the successive algebraic similari-
ty matrices Sj approach a constant matrix. Thus, for that
particular class of systems, the time-parameterized alge-
braic eigenvectors approach constant vectors, too. This
leads to the indication that the algorithms converge if in

the proces of diagonalization the updated system matrix
(A − Ṡj S−1

j ) in (11) gradually shows a slowlier varying
behaviour [9].
As a final remark, we note that following the method of
this paper, the dynamic eigenpairs can be determined in
an unique way. However, in the approach outlined in an
earlier paper, we pointed out that there is a dependence
on the initial value of an associated second-order Riccati
differential equation [4]. Such a Riccati equation has one
stable and one unstable equilibrium point. By choosing
the initial condition in a stable region, both methods yield
identical results.
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